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Abstract

Structural information can be extracted from one-bond residual dipolar couplings (RDC) measured in
NMR spectra of systems in field-ordered media. RDC can be on the order of J-couplings if the anisot-
ropy of alignment is �10)2, 10-fold stronger than that typically used for structural studies of water-solu-
ble proteins. In such systems the performance of 1H ! 15N polarization transfer methods of the INEPT
type is not satisfactory. In this study we show the effectiveness of adiabatic-passage cross-polarization
(APCP) in transferring the 1H ! 15N polarization in the bicelle-associated peptide Leucine Enkephalin
(Lenk). APCP is efficient both in static samples and in samples spun at the magic angle (MAS) or any
other angle of the spinning axis to the magnetic field (variable-angle spinning, VAS). The anisotropic
spectrum of an aligned static sample and the isotropic spectrum of the sample under MAS provide a set
of possible values for the 1H–15N RDC of phospholipid-associated Lenk. The unambiguous determina-
tion of the 1H–15N RDC was accomplished by means of VAS experiments.

Introduction

The measurement of residual anisotropic NMR
interactions in partially oriented media has
become an important and indispensable NMR
tool for the investigation of dissolved molecules.
In the following we discuss the measurement of
these quantities for peptides which associate
dynamically with oriented lipid surfaces. Our sys-
tem represents a case with an ‘intermediate’ degree
of ordering with an anisotropy DA of the align-
ment tensor (Saupe, 1964) on the order of �10)2.
Residual dipolar couplings (RDC) in liquid-state
NMR are usually obtained in the regime of weak
ordering (�10)3) where the spin–spin couplings
are only slightly modified from their value in iso-
tropic phase. Strong alignment (�10)1) is observed

for strongly membrane-associated biomolecules
(Sanders and Landis, 1995; Howard and Opella,
1996; Losonczi and Prestegard, 1998; Opella et al.,
1999; Glover et al., 2001).

For structural studies of peptides the RDC
deliver useful information about the angle of the
1H–15N bond with respect to the lipid surface.
They can easily be determined from the splitting
in the 15N spectra which have little background
signal from the lipids. In isotropic and weakly
oriented systems, INEPT transfer (Morris and
Freeman, 1979) via the one-bond 1H–15N
J-coupling (JHN) is the method of choice for
1H ! 15N polarization transfer employed for sen-
sitivity enhancement. Hartmann–Hahn cross-
polarization (HHCP) techniques (Hartmann and
Hahn, 1962; Pines et al., 1972; Bertrand et al.,
1978; Levitt, 1991) are rarely applied.

In the presence of intermediate or strong ori-
entational order, INEPT polarization transfer*To whom correspondence should be addressed. E-mail:
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becomes inefficient due to transverse dephasing
caused, e.g., by the strong coupling effects
between the proton spins, making CP techniques
more attractive (Levitt, 1991). However, CP as
well as INEPT suffer from the fact that the
polarization transfer is oscillatory with a fre-
quency determined by the total coupling.
D ¼ J þ Dres, where J is the scalar coupling and
Dres the RDC (see Figure 1 for the case of CP).
Because Dres depends on the orientation of the
bond with respect to the magnetic field direction,
no single time-period optimum for all bonds can
be chosen, similar to the situation in a solid pow-
der sample (Mehring, 1983). Again in analogy to
solid-state NMR, it may be beneficial to use adi-
abatic CP schemes (Hediger et al., 1994; Zhang,
1994; Ernst and Meier, 2002), which promote
efficient transfer essentially independent of the
precise coupling strength. The application of adi-
abatic-passage cross-polarization (APCP) meth-
ods was indeed initially proposed for liquid
samples by Chingas et al. (1980). APCP is also
able to partially overcome the problem of
matching the Hartmann–Hahn (HH) condition
jx1ð1HÞ ) x1ð15NÞj ¼ nxr within the coupling D

in the presence of the unavoidable rf-field inho-
mogeneity. This effect explains some of the gain
of APHH over normal HHCP observed in Fig-
ure 1. For larger, slowly tumbling molecules
cross-correlated relaxation could possibly be
employed as an alternative transfer mechanism
(Wimperis and Bodenhausen, 1989; Bruschweiler
and Ernst, 1992; Riek et al., 1999; Khaneja et al.,
2003).

This work describes the use of APCP polari-
zation transfer in the 15N NMR study of Leucine
Enkephalin (Lenk), a membrane surface-associ-
ated peptide, in a system of oriented bicelles
(Sanders and Landis, 1994; Rinaldi et al., 1997;
Prosser et al., 1999; Zandomeneghi et al., 2003b).
INEPT polarization transfer was ineffective
except under MAS conditions while APCP is
shown to be efficient in static samples and in
samples under MAS or variable-angle-spinning
(VAS). The 1H–15N RDC are unambiguously
determined by means of a series of 1D VAS
experiments, where the orientation of the liquid–
crystalline director is varied.

Materials and methods

Sample preparation

The fully 15N-labelled Lenk (labelling degree of
98%) with the sequence Tyr–Gly–Gly–Phe–Leu
was prepared using conventional FMOC synthe-
sis. The sample preparation is described in (Zan-
domeneghi et al., 2003b).

NMR experiments

Static and MAS NMR experiments were per-
formed at 9.4 T on a Bruker DMX 400 spec-
trometer with a doubly-tuned Bruker 4 mm
MAS probe. Proton decoupling was achieved
using WALTZ-16 (Shaka et al., 1983) with an rf-
field strength of 2.6 kHz. 15N chemical shifts are
indirectly referenced to external TMS with a
ratio N of 0.101329144 (Live et al., 1984), yield-
ing 15N shifts relative to liquid ammonia. The
spectral width was 8 kHz, the acquisition time
127 ms, and the recycle delay 3 s. The 15N and
the 1H rf fields were applied in the center of the
amide 15N and 1H frequency intervals, respec-
tively. In the APCP experiments the 1H rf field
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Figure 1. 15N signal intensity of the Phe residue in HHCP (a) and
APCP (b) experiments at different contact times. The sample was
an aqueous solution of Lenk, [Lenk] ¼ 60 mM. In the CP
experiment the 15N and 1H rf fields were 2 kHz. In the APCP the
15N rf field was 1 kHz and the 1Hwas ramped up through the HH
matching with a tangential sweep with the shape described by the
constant dIS (corresponding to the estimated coupling, see
Equation 14 in the reference (Hediger et al., 1994)) of 220 Hz and
the amplitude span of ±380 Hz (Hediger et al., 1995). The
spectral intensity in the APCP experiments did not depend on the
amplitude of the matched rf fields with x1ð15NÞ in the interval
between 850 and 3200 Hz.
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was ramped in a tangential sweep approximated
by 1023 discrete amplitude steps.

VAS 15N NMR spectra were obtained on a
Varian Infinity-Plus 500 spectrometer at a mag-
netic field of 11.7 T with a doubly-tuned home-
built probe using 6 mm Chemagnetics MAS
rotors. The orientation of the rotation axis was
controlled by a servo motor (Schneider Automa-
tion, North Andover, MA), connected via Kevlar
strings to the stator containing the Helmholtz
coil. The setting of the spinning angle was precise
to 1�. The spectral width was 5 kHz, the acquisi-
tion time 102 ms, and the recycle delay 4 s. In
the APCP experiments the 1H rf field was con-
stant during the contact time while the 15N rf
field was ramped up with a tangential sweep
approximated by 714 amplitude steps. During
the acquisition, CW proton decoupling with a
field of 6 kHz was applied. The bicelle order
parameter SBic was determined from the 31P
NMR spectra of the bicelle/Lenk sample and
DMPC/Lenk as described earlier (Zandomeneghi
et al., 2003b).

Results and discussion

Isotropic systems: Lenk in aqueous solution

The 15N spectra of Lenk in an isotropic aqueous
solution obtained with refocused INEPT and
APCP are shown in Figure 2. The resonance
assignments, obtained by HSQC, are reported in
Table 1. We may conclude from the spectra that,
under isotropic conditions, the two methods pro-
vide 1D spectra with comparable intensities, as
expected. The length of the APCP contact time
sc was 70 ms, though the efficiency of the trans-
fer was rather insensitive to sc between 50 and
100 ms (see Figure 1). The length of the contact
time (imposed by the requirement of adiabaticity)
is a drawback of the APCP method compared to
refocussed INEPT (with sC ¼ 10.6 ms and
sC ¼ 4s where s ¼ 1=4JHN) and, to keep sample
heating in an acceptable range, the amplitude of
the irradiation should be minimized. On the
other hand, sufficiently high rf fields must be
used to cover the required spectral bandwidth.
Here we have applied a 15N rf field of 1 kHz and
we have varied the proton rf field by ±380 Hz
around the Hartmann–Hahn condition, thus,

being able to cover both the 15N and 1H spectral
width for the amide signals (about 35 ppm for
15N and 3 ppm for 1H). Due to the relatively
long T1qrelaxation time of the sample investi-
gated, the details of the pulse shape during CP
are not very critical. For samples with faster
relaxation this becomes more of an issue and the
considerations discussed in (Hediger et al., 1994,
1995) become important. For the calculation of
the best shape the smallest jDj is relevant, corre-
sponding to dIS in (Hediger et al., 1994), for the
initial offset from the Hartmann–Hahn condition,
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Figure 2. 1H-decoupled refocused INEPT and APCP 15N
NMR spectra of Lenk in aqueous solution. Number of tran-
sients was 400. In the refocused INEPT in-phase magnetization
is transferred in a time s. The 1H 90� pulse was 9 ls, 15N 90�
pulse was 11 ls and sC delay was 10.64 ms ðsC ¼ 1=jJHNjÞ. In
the APCP spectrum the 15N rf field was 1 kHz, the 1H was
ramped up with a tangential sweep with the amplitude span of
±380 Hz and a shape with the constant dIS ¼ 220 Hz. The
contact time sc was 100 ms. The proton 90� hard pulse was 9 ls.

Table 1. NMR parameters of Lenk in aqueous solution

Residue 15N isotropic

chemical

shift (ppm)

JHN coupling (Hz)

Gly-2 112.44(1) )94.4(2)
Gly-3 108.39(1) )94.4(2)
Phe-4 119.60(1) )93.0(2)
Leu-5 126.43(1) )93.0(2)
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the largest jDj should be considered. A detailed
study of the optimum shape in the presence of
different relaxation active processes has, however,
not yet been undertaken.

Oriented systems: Lenk associated to phospholipids
surface in aligned bicelles

We have previously observed that Lenk associ-
ates to bicelles (Zandomeneghi et al., 2003b).
Between 303.5 and 323.0 K, bicelles self-orient in
the magnetic field B0 with the bicelle director
aligned orthogonal to B0 (Sanders and Landis,
1995). At 311 K and with B0 ¼ 9:4 T the bicellar
order parameter SBic for the system bicelle/Lenk
was measured to be SBic ¼ 0.62 ± 0.06.

The proton-decoupled and coupled 15N APCP
spectra of bicelles-associated Lenk in a static
sample are shown in Figures 3a and b, respec-
tively. An APCP contact time of 50 ms was cho-
sen. The 1H–15N couplings D observed in the
spectrum of Figure 3b, the 15N chemical shifts
obtained from the spectra in Figure 3a and the
assignment of the resonances are reported in
Table 2. The signals in the proton-coupled spec-
trum, especially the Phe-4 and Leu-5 ones, are
characterized by broad lines predominantly due
to 1H–1H RDC. This explains why the INEPT
1H ! 15N polarization transfer works poorly
with an transfer efficiency down by an order of
magnitude (data not shown). In addition, a dis-
tribution in the bicelles director orientation
(mosaic spread) produces a distribution in the
1H–15N RDC and 15N residual chemical-shift
anisotropy and, thus, can contribute to the
broadening of the lines.

Figure 4 reports the 15N spectra of bicelle-
associated Lenk under MAS of 270 Hz. The 15N
isotropic chemical shifts are very close to the
ones in water and can be readily assigned
(Table 2). Under MAS conditions, the efficiency
of the polarization transfer via refocused INEPT
is comparable to the one in the isotropic solu-
tion. The magnitude of the 1H–15N J couplings
can be determined from Figure 4b and their sign
is known to be negative (Bovey, 1988).

When the spectral lines are too broad, 1H
homonuclear decoupling must be applied in
order to obtain resolved splittings in the 15N
spectrum and determine the heteronuclear cou-
plings. An example is the Leu-5 signal around

126 ppm in the static spectrum (Figure 3b),
where the splitting is difficult to evaluate. How-
ever, under BLEW-48 proton homonuclear
decoupling (Burum et al., 1981), the scaled het-
eronuclear coupling frequency is clearly resolved
(Figure 3c). From the proton-coupled 15N spec-
tra it is not possible to determine unambiguously
the contribution of the dipolar couplings to the
splittings measured, since the doublets recorded
provide only the absolute values jDj ¼ jJ þ Dresj.
From the residual chemical shift we can infer
that all Dres values must be positive. We find that
for the residue Leu-5 only one solution,
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Figure 3. 15N NMR spectra of Lenk in bicellar solution. The
temperature was T ¼ 311 K and the sample was static with
SBic ¼ 0.62. The polarization transfer is obtained via APCP
with the same rf fields as in Figure 2 and sc ¼ 50 ms. (a) 1H-
decoupled with 4000 scans; (b) 1H-coupled spectrum with
10,000 transients measured; (c) 1H–1H homodecoupled spec-
trum with 15,000 scans. Homodecoupling was obtained with
the BLEW-48 sequence and a rf 1H field of 4 kHz. The split-
tings of Gly-2 and Gly-3 in (c) can be compared to the ones in
(b) and their ratio (0.34 ± 0.12, 0.45 ± 0.03, respectively)
corresponds, within error, to the theoretical scaling in the limit
of the infinitely short pulses, 0.424. The unresolved splitting
relative to Leu-5 in (b) can be calculated from (c) and from the
average experimental scaling: jDj ¼ 150 ± 20 Hz.
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Dres ¼ 240 ± 20 Hz, is likely. For the other resi-
dues the experimental data are consistent with
two values of the dipolar couplings for each split-
ting (Table 2). In particular, for Gly-3 the value
Dres ¼ –16 ± 11 Hz, which is negative but close
to zero, was not directly excluded.

Variable-angle spinning experiments

The 1H–15N dipolar coupling constants of bicelle-
associated Lenk could be determined with a series
of VAS experiments where 15N spectra are
recorded as a function of the angle H between the

rotor axis and the magnetic field direction (Tian
et al., 1999). The experiments are based on the
observation that the orientation of the bicelle
liquid–crystalline director can be reoriented by
sample-spinning. For spinning at angles
0 � H\54:7� the bicellar director is oriented
orthogonal to the rotor axis. (Tian et al., 1999;
Zandomeneghi et al., 2001) It is worthwhile to
point out that for H ¼ 0� bicelles orient as in the
static sample and, therefore, the static spectrum
and the spectrum under spinning with H ¼ 0� are
identical. A selection of the 15N VAS spectra mea-
sured with 0 � H � 54:7� is presented in Figure 5.

Table 2. NMR parameters of Lenk in bicelle solution

Residue 15N isotropic

chemical shifta

(ppm)

JHN

couplinga

(Hz)

15N

chemical

shiftb (ppm)

1H–15N

splittingb,c

(Hz)

15N residual

chemical shift

anisotropyb (ppm)

1H–15N residual

dipolar couplingb

(Hz)

Gly-2 112.96(2) )94(1) 113.52(2) 82(15) 0.56(4) 176(16) or 12(16)

Gly-3 108.28(2) )94(1) 109.03(2) 110(10) 0.75(4) 204(11) or )16(11)
Phe-4 119.04(2) )91(1) 120.27(2) 30(10) 1.23(4) 121(11) or 61(11)

Leu-5 124.18(2) )91(1) 125.87(5) 150(20) 1.69(7) 240(20)

aDetermined from MAS spectra.
bDetermined from static spectra, with SBic = 0.62.
cAbsolute value.
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Figure 4. 15N NMR spectra of Lenk in a bicellar solution. The
temperature was 311 K and the sample was spun at the magic
angle with a spinning frequency of 270 Hz. The polarization
transfer is obtained via APCP with identical experimental
conditions as in Figure 3. (a) 1H-decoupled spectrum with 3000
transients accumulated; (b) 1H-coupled spectrum, with 10,000
scans.
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Figure 5. 15N NMR spectra of Lenk in bicellar solution spin-
ning at different angles H. Spinning frequency was between 800
and 650 Hz, stable at each angle, and temperature was 313 K,
not corrected for the effect of the bearing air at lower temper-
ature. SBic ¼ 0.65. The APCP polarization transfer was ob-
tained with a 1H rf field of 1 kHz, a tangential sweep of the 15N
rf field with an amplitude span of ±400 Hz and dIS ¼ 90 Hz
(Hediger et al., 1994, 1995) and sc ¼ 50 ms. Number of tran-
sients was between 2400 and 12,000.
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A series of VAS experiments (or, alternatively a
2D SAS experiment, Zandomeneghi et al., 2003b)
relate the isotropic spectrum at H ¼ 54:7� to the
one at H ¼ 0�, and allow for the assignment of the
resonances in the static sample (Table 2) and
resolve the ambiguity in the determination of Dres.
The dependence of the observed line splittings D
on H is described by D ¼ J þ Dres � P2ðcosHÞ, with
the second-order Legendre polynomial P2ðcosHÞ ¼
ð3 cos2 H� 1Þ=2. Due to the averaging of the sus-
ceptibility tensor, the mosaic spread of the bicellar
liquid crystal increases close to the magic angle (Zan-
domeneghi et al., 2003a) and partial powder pat-
terns (of hetero- and homonuclear interactions) can
be expected to determine the line shape. Therefore,
SAS methods may be necessary for accurate mea-
surements (Zandomeneghi et al., 2003b). In the VAS
spectra in Figure 5, the heteronuclear couplings are
large near the magic angle and the resolution turned
out to be sufficient to perform the technically simpler
VAS experiment.

The splittings corresponding to the Phe-4, Gly-
3 and Gly-2 residues are reported in Figure 6 as a
function of P2ðcosHÞ. The experimental data can
be described with the linear function characterized
by the coupling constants ðJ ;DresÞ, reported in
Table 3. The values determined are consistent,
within statistical errors, with one of the possible
two solutions given in Table 2 (obtained at differ-
ent field using a different sample).

Conclusions

Adiabatic-passage cross polarization is shown to
be efficient in peptides associated with isotropic
and ordered bicelles. Under the moderately ori-
ented conditions described, APCP is a more effi-
cient polarization transfer method than INEPT.
It is easy to implement and quite robust against
mismatching of the Hartmann–Hahn condition.
For a system with an anisotropy of the alignment
in the order of 10)2, like the sample Lenk/bi-
celles, low-power rf fields are sufficient to excite
the amide spectral region.

Variable-angle spinning experiments have been
used to assign the resonances from the static, ori-
ented sample of bicelle-associated Lenk and to
determine the 1H–15N dipolar couplings. A series
of 1D VAS experiments allows to correlate the
anisotropic spectrum recorded at H ¼ 0� (identi-
cal to the static spectrum) to the isotropic one,
measured under MAS at H ¼ 54:7�, facilitating
the assignment of the resonances. Besides, the
VAS spectra recorded with 0�� H � 54:7� permit
to determine unambiguously the residual dipolar
couplings which provide information about the
orientation of the N–H bonds of Lenk with
respect to the bilayer surface. We are presently
investigating whether the information obtained in
the present study, together with other residual
anisotropic spin interactions and together with
1H–1H distances from NOE measurements in an
isotropic bicelle sample (Marcotte et al., 2004), is
sufficient for a precise structure determination of
the membrane-associated Lenk molecule.
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